A surgeon specific automatic path planning algorithm for deep brain stimulation

نویسندگان

  • Yuan Liu
  • Benoit M. Dawant
  • Srivatsan Pallavaram
  • Joseph S. Neimat
  • Peter E. Konrad
  • Pierre-François D'Haese
  • Ryan D. Datteri
  • Bennett A. Landman
  • Jack H. Noble
چکیده

In deep brain stimulation surgeries, stimulating electrodes are placed at specific targets in the deep brain to treat neurological disorders. Reaching these targets safely requires avoiding critical structures in the brain. Meticulous planning is required to find a safe path from the cortical surface to the intended target. Choosing a trajectory automatically is difficult because there is little consensus among neurosurgeons on what is optimal. Our goals are to design a path planning system that is able to learn the preferences of individual surgeons and, eventually, to standardize the surgical approach using this learned information. In this work, we take the first step towards these goals, which is to develop a trajectory planning approach that is able to effectively mimic individual surgeons and is designed such that parameters, which potentially can be automatically learned, are used to describe an individual surgeon’s preferences. To validate the approach, two neurosurgeons were asked to choose between their manual and a computed trajectory, blinded to their identity. The results of this experiment showed that the neurosurgeons preferred the computed trajectory over their own in 10 out of 40 cases. The computed trajectory was judged to be equivalent to the manual one or otherwise acceptable in 27 of the remaining cases. These results demonstrate the potential clinical utility of computer-assisted path planning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-modal MRI analysis for automatic trajectory planning of deep brain stimulation neurosurgery

Introduction. A promising treatment for severe Parkinson disease involves the insertion of deep brain stimulation (DBS) electrodes via minimally invasive imageguided neurosurgery. Planning the optimal procedure requires the surgeon to find the best direct path to the subthalamic nuclei (STN) target that avoids critical brain structures (e.g. ventricles, sulci, blood vessels, motor area) to prev...

متن کامل

O10: Deep Brain Stimulation and Psychiatry

The use of deep brain stimulation in psychiatric disorders has received great interest owing to the small risk of the operation, the reversible nature of the technique, and the possibility of optimizing treatment postoperatively. Currently deep brain stimulation in psychiatry is investigated for obsessive-compulsive disorder, Gilles de la Tourette’s syndrome and major depression. This presentat...

متن کامل

3D Motion Planning for Steerable Needles using Path Sets

INTRODUCTION Bevel-tipped flexible needles can be steered in soft tissue to clinical targets along curved paths in 3D while avoiding critical structures. Duty-cycled rotation [1] during insertion allows for control of the curvature of the needle. These capabilities of 3D steerable needles make it potentially suitable for applications such as deep brain stimulation (DBS) and drug delivery to bra...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Automatic Trajectory Planning for Deep Brain Stimulation: A Feasibility Study

DBS for Parkinson's disease involves an extensive planning to find a suitable electrode implantation path to the selected target. We have investigated the feasibility of improving the conventional planning with an automatic calculation of possible paths in 3D. This requires the segmentation of anatomical structures. Subsequently, the paths are calculated and visualized. After selection of a sui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012